Classic Series installation and maintenance manual

RELIABLE CHEMICAL FEED PUMPS SINCE 1957

OPERATING REQUIREMENTS

SAFETY INSTRUCTIONS

This is the safety alert symbol. When displayed in this manual or on the equipment, look for one of the following signal words alerting you to the potential for personal injury or property damage.

Marns about hazards that CAN cause death, serious personal injury, or property damage if ignored.

A CAUTION Warns about hazards that **WILL** or **CAN** cause minor personal injury or property damage if ignored.

FLECTRIC SHOCK HAZARD

NOTICE: Indicates special instructions or general mandatory action.

READ AND FOLLOW ALL SAFETY INSTRUCTIONS!

GENERAL SAFETY HAZARDS AND NOTICES

A WARNING ELECTRIC SHOCK HAZARD:

Pump supplied with grounding power cord and attached plug. To reduce risk of electrical shock, connect only to a properly grounded, grounding type receptacle.

A AVERTISSEMENT RISQUE DE CHOC ELECTRIQUE:

Cette pompe est équipée d'une fiche de mise à terre. Pour réduire le risque de choc électrique, s'assurer que la fiche est bien raccordée à une prise de courant avec une connexion de mise à terre

DO NOT alter the power cord or plug end.

DO NOT use receptacle adapters.

DO NOT use pump with a damaged or altered power cord or plug. Contact the factory or an authorized service facility for repair.

PUMP INTENDED FOR INDOOR USE.

Cette pompe est prévue pour utilisation à l'intérieur.

PUMP SUITABLE FOR USE OUTDOORS when installed with a Stenner Rain Roof Part No. MP90000.

Electrical installation should adhere to all national and local codes. Consult a licensed professional for assistance with proper electrical installation.

DISCONNECT power cord before removing motor cover for service. **Electrical service by trained personnel only.**

A WARNING EXPLOSION HAZARD:

This pump **is not** explosion proof. **DO NOT** install or operate in an explosive environment.

NARNING RISK OF FIRE HAZARD:

DO NOT install or operate on any flammable surface.

MARNING RISK OF CHEMICAL EXPOSURE:

Potential for chemical burns, fire, explosion, personal injury, or property damage. To reduce risk of exposure, the use of proper personal protective equipment is mandatory.

THE FOLLOWING SAFETY HAZARDS AND NOTICES APPLY TO METERING PUMPS THAT CARRY THE "ETL SANITATION" LISTING, CONFORM TO NSF-STD 50, AND ARE LISTED FOR USE IN POOLS AND SPAS.

★ WARNING RISK OF CHEMICAL OVERDOSE:

To reduce risk, follow proper installation methods and recommendations. Check your local codes for additional guidelines.

Removing power from pool/spa recirculation pump must also remove power from pump.

The use of an auxiliary safety device (not supplied), such as a flow switch or sensor, is recommended to prevent feed pump operation in the event of a recirculation pump failure or if flow is not sensed.

Point of chemical injection should be beyond all pumps, filters, and heaters.

A CAUTION PLUMBING:

Chemical feed pump installation must always adhere to your local plumbing codes and requirements. Be sure installation does not constitute a cross connection. Check local plumbing codes for guidelines.

- NOTICE: This metering pump and its components have been tested for use with the following chemicals: Sodium Hypochlorite (10-15%), Muriatic Acid (20-22 Baume, 31.5% Hcl), and Soda Ash.
- NOTE: Cette a pompe de dosage et ses composants ont été testés pour utilisation avec les produits chimiques suivants; Hypochlorite de Sodium (solution de 10-15%); Acide Muriatique (20-22 Baume, 31.5% Hcl); Cendre de Soude.
- **NOTICE:** This metering pump is portable and designed to be removable from the plumbing system without damage to the connections.

OPERATING REQUIREMENTS

ADDITIONAL PRECAUTIONS AND NOTICES

- **DO** check supply voltage prior to connecting power cord to prevent motor damage.
- **DO** mount the pump in a dry location to avoid water intrusion and pump damage.
- **DO** install pump so that it is in compliance with all national and local plumbing and electrical codes.
- **DO** install pump to work in conjunction with pool, spa, well pump, or system controls.
- **DO** use the proper product to treat potable water systems, use **only** chemicals listed or approved for use with potable water.
- **DO** install the pump vertically, with the pump head pointed downward and the spill recovery in place to reduce the risk and severity of leakage.
- **DO** use all required personal protective equipment when working on or near chemical metering pumps.
- **DO** pump generous amounts of clean water or a compatible buffer solution through pump prior to service, storage, or shipping.

- **DO NOT** attempt installation or service prior to reading and understanding all safety hazards. This equipment is designed for installation and service by trained personnel.
- **DO NOT** use thread sealant tape on pump tube connections or tools to tighten connections.
- **DO NOT** apply grease, oil, or lubricants to the pump tube or pump housing.
- **DO NOT** mount pump vertically with pump head up. This will help to prevent pump damage in the event of a leaking pump tube.
- **DO NOT** mix chemicals in the solution container. Follow recommended mix procedures as provided by the manufacturer.
- **DO NOT** operate pump unless chemical is completely in solution. Turn metering pump off when replenishing solutions.
- **DO NOT** install pump directly above an open solution container. Chemical fumes can damage the pump.
- **DO NOT** allow water intrusion of the motor. Corrosion and damage will occur.

PRE-INSTALLATION INSTRUCTIONS

- 1. Verify metering pump model and voltage requirements.
- Unpack pump and all box contents. Separate contents to verify all items have been received.

Accessories included with each metering pump are based on pressure rating (25 or 100 psi) and suction/discharge tubing size (1/4", 3/8", 6mm).

25 psi unit includes:

- (3) Connecting Nuts (1/4" or 3/8")
- (3) Ferrules w/1/4" & 6mm or (2) ferrules w/3/8"
- (1) Injection Fitting
- (1) Ceramic weight with clip
- (1) 20' roll of suction & discharge tubing 1/4" or 3/8" white or UV black

OR

6mm (Europe) white

- (1) Spare pump tube
- (1) Installation and Maintenance Manual

100 psi unit includes:

- (3) Connecting Nuts (1/4" or 3/8")
- (3) Ferrules w/1/4" & 6mm or (2) ferrules w/3/8"
- (1) Injection Check Valve
- (1) Ceramic weight with clip
- (1) 20' roll of suction & discharge tubing 1/4" or 3/8" white or UV black

OR

6mm (Europe) white

- (1) Spare pump tube
- (1) Installation and Maintenance Manual
- 3. Read the Installation and Maintenance Manual before beginning the installation.

Storage Suggestions

When your metering pump is not in use, we recommend that you:

- Run fresh water through pump to rinse chemical from pump tube and allow to run dry.
- Rinse off and wipe clean chemical residue or debris from tube housing and roller assembly to avoid corrosion.
- Store pump and pumping tubes in a non-corrosive environment and dry location to avoid possible water intrusion.
- Do not store pump tubes on chemical tank, in the pump room, or direct sunlight.

PRODUCT SPECIFICATIONS

System output is determined by motor RPM and pump tube size, as well as by the setting of the feed rate control. In addition, Stenner chemical metering pumps are available as low-pressure or high-pressure models (0-25 psi=low pressure, 26-100 psi=high pressure).

Classic Series

U.S. Gallon Ranges:

 Series 45
 0.2-50 GPD

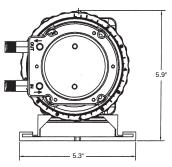
 Series 85
 0.3-85 GPD

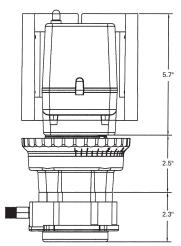
 Series 100
 0.3-100 GPD

 Series 170
 0.5-170 GPD

Note: Max GPD for pressures 26-100 psi is 40 gallons. Contact factory for details.

Metric Ranges:


 Series 45
 0.6-151.4 LPD


 Series 85
 0.9-257.4 LPD

 Series 100
 0.9-302.8 LPD

 Series 170
 1.5-514.8 LPD

Note: Max LPD for pressures 1.72 bar to 6.9 bar is 121.1 liters per day. Contact factory for details.

For double head adjustable models, add pump head (dimensions).

For dual head/dual control, add feed rate control and pump head (dimensions).

Specifications:

Discharge Pressures 0-100 psi; 0-6.9 bar Output Ranges 0.2-170 gallons/day;0.6-514.8 liters/day Turndown Ratio (adjustable models)in 2.5% increments Voltages Available 120VAC 60Hz; 220VAC 60Hz; 230VAC 50Hz International; 250VAC 50Hz International Motor RPM 26 (45 & 100 series); 44 (85 & 170 series) **Connections** 1/4", 3/8" or 6mm suction/discharge tubing Shipping Weight....... 6 lbs (2.72 kg)-single head, fixed 8 lbs (3.63 kg)-single head adjustable 8.5 lbs (3.85 kg)-double head, fixed 9 lbs (4.08 kg)-double head, adjustable Operating Temperature Maximum 125 degrees Fahrenheit/ 51.6 degrees Celsius

Materials of Construction:

All Housings* Lexan® Polycarbonate Plastic

Peristaltic Tube** Santoprene® FDA Approved

Check Valve Duckbill

Suction/Discharge Tubing . . LDPE Polyethylene-NSF/FDA Approved Ferrules(1/4" & 6mm)

Tube Fittings Type 1 Rigid PVC-NSF Listed

Connecting Nuts Check Valve Fittings Ceramic Weight Clip

Suction Weight Ceramic

All Fasteners Stainless Steel

- * Lexan® is a registered trademark of General Electric. Consult General Electric for chemical resistance of Lexan®.
- **Santoprene® is a registered trademark of Advanced Elastomer System.

 Refer to chemical resistance chart in Stenner catalog for material compatibility.

Materials for all wetted parts have been tested and approved for potable water applications.

INSTALLATION INSTRUCTIONS

Discharge Side

Shut off water supply.

Connect nut and ferrule to injection fitting or injection check valve. Hand tighten only.

At point of injection, provide a female 1/2" or 1/4" connection. Install at the proper location for your application.

NOTICE: The use of an injection check valve as shown above is required in all high-pressure applications (26 to 100 psi - 1.73 to 6.9 bar).

Suction Side

Run the suction tubing to the solution tank. Allow for some slack in the tube to avoid kinks.

Measure the suction tubing on outside of solution tank to ensure it will be 2-3" from the bottom of the tank. Do not allow weight to sit at the bottom of the tank.

for outdoor use or if metering pump is subject to washdown.

To prevent leaks, all the ferrules must be installed as illustrated.

Cut suction/discharge tubing to desired length with enough slack to avoid kinks.

Connect nut, ferrule, and discharge tubing to the discharge side of the pump head (labeled "out" on cover of head). Finger tight only. Do not use thread seal tape.

> Connect nut, ferrule, and suction tubing to the suction side of the pump head (labeled "in" on cover of head). Hand tighten only. Do not use thread seal tape.

Immerse in Solution Tank.

Always use rain roof

Plugging In

Check voltage of the outlet vs. voltage requirement of metering pump with a voltage meter.

Turn pump on and set feed rate dial to desired GPD. Refer to the output chart of your specific model number.

Plug into a grounded power source.

Spill Recovery

Detach cover. Punch out one of the indented holes with a 7/32" punch.

in

Insert a length of 1/4 suction/discharge tubing into the newly created hole and place the other end back into the solution tank.

Correct Mounting Position

Chemicals will drain back into solution tank reducing spillage.

STEP 1

Mount Chemical Metering Pump and Verify Voltage Supply

- 1.1 Locate a suitable location within ten feet of the point of injection. Preferably one to two feet above highest level of chemical solution tank.
- NOTICE: Suction Lift installation recommended. AVOID Flooded Suction or pump mounted lower than the solution container. If pump is installed with Flooded Suction, a shut-off valve or other means to halt flow to pump during service must be provided.
- 1.2 Using the wall-mounting bracket provided, mark the location of the screw pilot holes by using the bracket as a template. Drill pilot holes as required.

NOTICE: Allow eight inches of clear space above or behind the mounting bracket for pump insertion or removal. This allows pump to be inverted in the bracket for pump tube replacement.

1.3 Secure the wall-mounting bracket to the chosen location with a suitable fastener/anchor combination.

INSTALLATION INSTRUCTIONS

STEP 1...CONTINUED

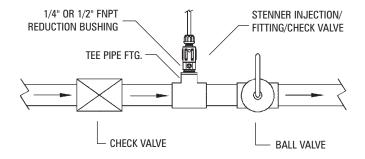
- **1.4** Slide the feeder into the bracket from the top.
- 1.5 Use a volt meter to verify supply voltage of the receptacle prior to connecting the power cord. Cycle the pump control (flow switch, pressure switch, etc.) to verify the metering pump power supply circuit works in conjunction with the control equipment.
- **1.6** Plug the metering pump into the proper receptacle.
- 1.7 Turn the Feed Rate Control dial to setting "10." Cycle motor On-Off switch to ON. Observe the rollers turn continuously.
- 1.8 Turn switch to OFF position. Proceed to Step 2.

STEP 2

Install Suction Line

- 2.1 Locate the 20' roll of suction/discharge tubing and uncoil. Determine the required amount of suction tubing required to reach two to three inches from the bottom of chemical tank. Use the outside of the tank as a guide. Mark this length on tubing.
- **2.2** Using a sharp utility knife, cut the tubing square and burr free.
- 2.3 Slide the connecting nut over the tubing, followed by the ferrule. Slide up the tube 1/2" to 3/4", making sure the tapered or angled portion of the ferrule and the female thread end of the nut is pointed towards the cut end of tubing.
- 2.4 Insert the tubing approximately 3/4" into pump tube discharge fitting labeled "IN" on tube housing cover. FINGER TIGHT ONLY while holding the "IN" fitting to prevent rotation.
- **2.5** Drill a 17/64" hole into the bung cap, lid bottle cap, etc., of the chemical tank. Push the suction tubing into the tank.
- 2.6 Insert the tubing into the ceramic weight assembly keeping the tubing approximately one inch from the end of the ceramic weight. Suspend the ceramic weight two or three inches above the bottom of tank. Proceed to Step 3.
- NOTICE: DO NOT install suction/discharge without sufficient slack. Normal maintenance requires trimming. Tight radius can lead to kinks and stress cracks.

STEP 3


Install Discharge Line

- 3.1 Locate remaining suction/discharge tubing, two connecting nuts and ferrules.
- **3.2** Repeat step 2.3. Install connecting nut and ferrule 1/2" to 3/4" up the tubing.
- 3.3 Insert the tubing approximately 3/4" into pump tube discharge fitting labeled "OUT" on tube housing cover. FINGER TIGHT ONLY while holding the "OUT" fitting to prevent rotation.

MARNING HAZARDOUS PRESSURE:

Use caution and bleed off all resident system pressure prior to attempting service or installation.

3.4 Shut off water or circulation system and bleed off any resident system pressure.

Typical Point of Injection

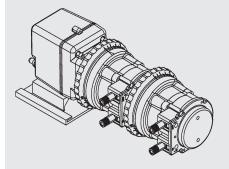
- 3.5 Locate suitable point of injection. Install beyond all pumps and filters or as determined by application. If there is no 1/2" or 1/4" NPT female fitting at the location, one will have to be provided (refer to Steps 3.6 or 3.7).
- 3.6 Drill and tap the pipe wall 1/2" or 1/4" FNPT.
 - **3.61** Drill the proper tap-size hole directly into the pipe wall (if a hole exists from previous install, be sure it is cleared of any build up). Use caution when drilling so as not to drill completely through pipe.
 - 3.62 Using a corresponding size pipe tap, run the tap into hole 3 to 4 full threads of the tap. DO NOT tap too deep.
- **NOTICE:** Verify thread fit with the MNPT end of the injection fitting.

INSTALLATION INSTRUCTIONS

STEP 3...CONTINUED

- 3.7 Install a suitable pipe tee fitting or reduction tee. Use the proper procedures for solvent welding PVC fittings as provided by the glue manufacturer. Allow ample drying time as recommended by the manufacturer's instructions for the product being used.
- 3.8 Locate the injection fitting or injection check valve. Wrap the MNPT end of the fitting with 2 to 3 wraps of thread seal tape. Trim extension tip as required to put tip directly in the flow of water.
- 3.9 Install the MNPT end of the fitting into the FNPT point of injection and hand tighten.

3.10 High-pressure install (26-100 psi models)


Turn on the water system and allow the system to reach operating pressure. Check the installed check valve for leaks at the NPT threads and tighten an additional one-fourth to one turn if required. Install the remaining connecting nut and ferrule onto the discharge tubing. Insert the tubing into the injection check valve until tubing bottoms in the fitting. Tighten the connecting nut.

Low-pressure install (0-25 psi models)

Install the remaining connecting nut and ferrule onto the discharge tubing. Insert the discharge tubing into the injection fitting 3/4" to 1". Tighten the connecting nut.

STEP 3...CONTINUED

- 3.11 Turn the metering pump ON.
- 3.12 Allow the metering pump to run on setting "10" to prime system. Visually observe the chemical move through the tubing (when tubing is clear).
- **3.13** Turn the Feed Rate Control dial to your required initial setting. Check the entire system for leaks.
- 3.14 After a suitable amount of time dosing, verify your application with test equipment. Perform final adjustments to the metering pump setting to provide the required residual or results as determined through adequate test equipment or analysis.

Determining Dual Head Dual Control Output

On double-head systems, dual-control mechanisms are available to match your application needs. In this type of configuration, the outside head is set to operate at a percentage of the inside head. To determine output rates on a dual head dual control pump:

- 1. Use the appropriate output table to select the desired output for the inside pump head, or Primary Output.
- 2. Using as an example: 170MDC5
- Primary feed rate control on 4 = 34 GPD (103 LPD)
- Outside feed rate control on 3 = 30% of primary feed rate setting OR 10.2 GPD (30.9 LPD)
- NOTICE: The outside feed rate control is completely dependent on the primary feed rate control. To achieve maximum output, both settings have to be on 10.

PUMP TUBE REPLACEMENT INSTRUCTIONS

SAFETY HAZARDS AND NOTICES

MARNING | RISK OF CHEMICAL EXPOSURE:

To reduce risk of exposure, check the pump tube regularly for leakage. At the first sign of leakage, replace the pump tube.

To reduce risk of exposure, the use of proper personal protective equipment is mandatory when working on or near chemical metering pumps.

To reduce risk of exposure, pump generous amounts of water or a compatible buffer solution to remove chemical from pump prior to service.

Consult chemical manufacturer and MSDS sheet for additional information and precautions for the chemical in use

Personnel should be skilled and trained in the proper safety and handling of the chemicals in use.

NARNING | HAZARDOUS PRESSURE/CHEMICAL EXPOSURE:

Use caution and bleed off all resident system pressure prior to attempting service or installation.

Use caution when disconnecting discharge tubing from pump. Discharge may be under pressure. Tubing may contain chemical.

♠ CAUTION PINCH POINT HAZARD:

Use extreme caution when replacing pump tube.

Be careful of your fingers and **DO NOT** place fingers near rollers.

ADDITIONAL PRECAUTIONS AND NOTICES

NOTICE: DO NOT pull excessively on pump tube. Avoid kinks or damage during tube installation.

NOTICE: Inspect the suction/discharge tubing, injection point (into pipe), and injection check valve duckbill for blockages after any tube rupture. Clear as required.

NOTICE: Prior to pump tube replacement, inspect the entire pump head for cracks or damaged components. Ensure rollers turn freely.

NOTICE: Rinse off chemical residual and clean all chemical and debris from pump head components prior to tube replacement. Apply Stenner grease to main shaft and tube housing cover bushing during tube replacement.

Prepare Pump For Tube Replacement

- Read and understand all safety instructions and precautions prior to attempting tube replacement.
- Pump a generous amount of water or compatible buffer to flush chemical from pump tube and lines. Allow pump to run dry several minutes.
- Disconnect pump suction and discharge tubing connections from pump head. Use caution and follow all safety instructions.
- 4. Relocate pump to a suitable bench or location to perform service.
- Plug power cord into a constantly energized, properly grounded receptacle for service.

Removing the Old Pump Tube

- 1. Turn metering pump "off."
- 2. Unscrew and remove the tube housing cover.
- Set the Feed Rate dial to L setting and leave on this setting until finished.
- 4. Turn the pump "on" and let it run until one of the three slots in the roller assembly lines up with the bottom tube fitting (suction side).
- 5. Turn pump "off."
- **6.** Without moving the roller assembly further, lift the tube fitting out of the housing slot and pull it toward the center of the roller.
- 7. Turn the pump "on" and allow roller assembly to jog while guiding the tube up and out of the housing. Turn the pump "off" when the slot in the roller assembly aligns with the "OUT" (discharge) tube fitting. Completely remove the tube assembly.

Installing the New Pump Tube

- With the pump still on L setting, run until one of the three slots in the roller assembly lines up with the bottom tube fitting (suction side). Turn pump "off."
- 2. Place the tube fitting into position in the housing and slot.
- Turn the pump "on" and allow the pump to jog the roller assembly while guiding the tube to prevent it from getting pinched between housing and roller assembly.
- 4. When the roller assembly slot reaches the housing slot the fitting inserts into, turn pump "off." Turn Feed Rate dial to "10." While holding fitting away from roller assembly, turn pump "on" and allow rollers to stretch tube until fitting can be inserted into the housing.
- 5. Turn the pump "off."
- 6. Replace the cover and the screws leaving the front screws over the fitting loose enough to rotate the tube fitting.

Centering the Pump Tube

To obtain maximum tube life, the tube must ride in the center of the rollers.

- To center the tube on the rollers, set the Feed Rate dial to setting "10." Turn pump "on."
- Turn the "IN" (suction) tube fitting located on the bottom of the pump head not more than 1/8 of a turn in the direction in which the tube must move.
- Observe the tube assembly respond and adjust in either direction until the tube rides approximately in the center of the rollers.
- 4. Turn the pump "off." Tighten the cover screws.

NOTICE: Avoid rotating your wrist while installing tube. This will prevent tube twisting. A twisted tube will not center. BE CAREFUL OF YOUR FINGERS. Do not force the tube.

SEPARATING AND RECONNECTING COMPONENTS

Stenner's quick-lock riveting system makes component separation and reconnection fast and easy.

Separating

- 1. Turn the pump off and unplug the power cord.
- 2. Hold the feed rate control section and turn pump head clockwise until it stops.
- 3. Pull the pump head straight out.
- 4. Grasp the feed rate control section and turn clockwise until it stops and pull straight out.

For Double Head and Dual Head Control pumps, follow the above steps, starting with the outside pump head first and working toward the motor.

Reconnecting

- 1. To reconnect the feed rate control to the motor, confirm pressure spring is in place, line up the flat side of the motor shaft with the flat side of the brass spider in the feed rate control, and push straight on.
- 2. Turn the feed rate control so the rivet holes line up with the rivets and turn counter clockwise until it locks into place. The arrow on the feed rate should be on top.
- 3. Put the pump head (with shaft) into the feed rate control and turn it counter clockwise until the shaft falls into place and
- 4. Line up the rivet holes on the pump head with the rivets on the feed rate control while pushing and turning it until the snap lock engages firmly to the pump head by turning it counterclockwise.
- 5. Attach the pump head firmly by turning it counterclockwise.

CLEANING THE POINT OF INJECTION

Periodic inspection and cleaning of the point of injection will maintain proper pump operation and provide maximum pump tube life.

NOTICE: Low-pressure models are installed using an injection fitting and high-pressure models use an injection check valve. Both allow the extension tip to be installed in the center of the pipe directly in the flow of water to help reduce deposit accumulation.

/!\ | ▲ WARNING | HAZARDOUS PRESSURE/CHEMICAL EXPOSURE:

Use caution and bleed off all resident system pressure prior to attempting service or installation.

• Use caution when disconnecting discharge tubing from pump. Discharge may be under pressure. Tubing may contain chemical.

To reduce risk of exposure, the use of proper personal protective equipment is mandatory when working on or near chemical metering pumps.

- 1. Turn metering pump "off" and unplug power cord. Disable water pump or auxiliary equipment electrical supply.
- 2. Depressurize system and bleed pressure from pump discharge tubing.
- 3. Loosen and remove connecting nut and ferule from the injection check valve or injection fitting to disconnect discharge tubing.

For high-pressure models (100 psi)

- Unscrew the top fitting (check valve body) to disassemble. The bottom fitting (injection fitting with arrow) should remain attached to the pipe.
- Remove duckbill from check valve body and replace if deteriorated or swollen (yearly replacement recommended). If clogged, clean or replace.
- Examine O-Ring on the injection fitting and replace if deteriorated or damaged.
- 4. Insert a round shank screwdriver through injection fitting into the pipe to locate or break up accumulated deposits. If screwdriver cannot be inserted, drill the deposit out of the injection fitting. (Do not drill through the opposite pipe wall.)
- 5. Replace discharge tubing if cracked or deteriorated. If the end is clogged, cut off the calcified or blocked section of tubing.
- 6. For low-pressure models (25 psi)
- Replace ferrule and insert the discharge tubing into the injection fitting approximately 3/4"-1" until it stops.

For high-pressure models (100 psi)

- Reassemble the injection check valve in reverse order.
- Replace ferrule and insert the discharge tubing into the injection check valve approximately 3/4" until it stops.
- 7. Tighten the connecting nut finger tight.
- 8. Enable the water pump electrical supply and pressurize the water system.
- 9. Put the metering pump back in service and inspect all connections for leaks.

TROUBLESHOOTING GUIDE

PROBLEM	POSSIBLE CAUSE	SOLUTION
Gear Motor	MARNING HAZARDOUS VOLTAGE: DISCONNECT power cord before removing m	otor cover for service. Electrical service by trained personnel only
Noise is excessively loud.	Ball bearings are worn.	Replace ball bearing assembly.
	Lubrication is insufficient.	Grease gears and gear posts.
	Gears or gear posts are worn.	Inspect/replace gears and gear posts.
Motor does not work; fan is not running.	Electrical supply is faulty.	Check supply voltage circuit.
	Motor coil is damaged.	Replace motor coil.
	Motor bearings are worn or damaged.	Replace ball bearing assembly.
	Power cord is damaged.	Inspect/replace power cord.
	Wire connections are faulty.	Inspect/repair electrical connections.
Motor runs; fan turns; output shaft does not.	Gear has failed.	Replace failed gear.
	Output gear is stripped.	Replace output shaft.
Motor overheats and shuts off and on.	Voltage is incorrect.	Check that voltage and frequency match data label.
	Ambient temperature is high.	Install pump in an area not to exceed a maximum of 125° F.
	Coil is damaged/malfunctioning.	Replace motor coil.
Feed Rate Control		
Adjustment ring will not turn.	Variable cam has seized.	Grease variable cam and cam slot.
3	Adjustment ring has seized.	Clean and lubricate ring.
Adjustment ring turns, output doesn't change.	Variable cam has disengaged from ring.	Re-insert bend into ring.
3	Variable cam is broken.	Replace variable cam.
Pump head is not rotating.	Index plate is worn.	Turn over or replace index plate.
	Problem with the gear motor.	Refer to Gear Motor Section.
	Pump head roller assembly is stripped.	Replace roller assembly.
	Index pin is broken.	Replace index pin and lifter assembly.
Pump head rotates continuously.	Variable cam is installed incorrectly.	Replace or re-insert variable cam.
Indexing is erratic.	Index plate is worn.	Turn over or replace index plate.
masking is circus.	Variable cam is worn.	Replace variable cam.
	Lifter is worn.	Replace index pin and lifter assembly.
Pump Tubes		ges the metering pump. Inspect pump frequently for leakage
	and wear. Refer to pump tube replacem	ent section for additional safety precautions and instructions.
Tube is leaking.	Pump tube has ruptured.	Replace pump tube at routine intervals.
	Calcium or mineral deposit.	Clean injection fitting, replace pump tube.
	Excessive back pressure.	Check tube psi rating against system pressure; replace accordingly.
	Tube is not centered.	Replace tube and center it.
Tube life is shortened.	Chemical attack.	Check chemical compatibility.
	Mineral deposit at injection point.	Remove deposit and replace pump tube.
	Sediment blockage.	Maintain suction line 2 – 3" above bottom of tank.
		Use a suction line strainer.
Pump Heads	Degraded check valve duckbill.	Replace check valve duckbill at every tube change.
Components are cracking.	Chemical attack.	Check chemical compatibility.
Visible fluid in pump head.	Pump tube rupture/leak.	Replace pump tube and ferrules and center.
No pump output; pump head rotates.	Depleted solution tank.	Replenish solution.
No pump output, pump nead rotates.	Pump suction line weight is above solution.	Maintain suction line 2 – 3" off bottom of tank.
	Suction line leak.	Inspect or replace suction line.
	Ferrules installed incorrectly or damaged.	
	, ,	Replace compression ferrules.
	Injection point is clogged. Clogged suction/discharge tubing and/or	Inspect and clean injection point.
	injection check valve.	Clean and/or replace as necessary.
Low numb outputs much bond and a	Life of pump tube is exhausted.	Replace pump tube.
Low pump output; pump head rotates.	Pump tube is worn.	Replace pump tube.
	Injection point is restricted.	Inspect and clean injection point.
No numero quitavate	High system back pressure.	Check tube against system pressure; replace accordingly.
No pump output; pump head not rotating.	Roller assembly is stripped.	Replace roller assembly.
	Feed Rate Control problem.	Refer to Feed Rate Control section.
	Gear motor problem.	Refer to Gear Motor section.
Pump output is high.	Incorrect tube size.	Replace tube with correct size.
Pump output is high.	Roller assembly is broken.	Replace roller assembly.
Pump output is high.		

ROTOR AND CAM ASSEMBLY REPLACEMENT INSTRUCTIONS

Rotor Assembly

CAM Assembly

ROTOR ASSEMBLY REPLACEMENT INSTRUCTIONS

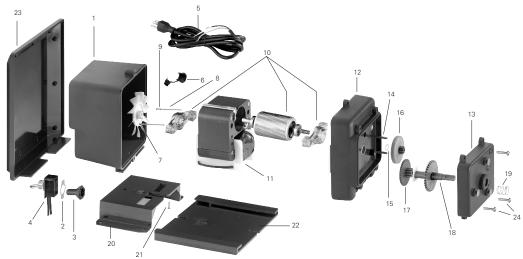
A WARNING HAZARDOUS VOLTAGE:

DISCONNECT power cord before removing motor cover for service. **Electrical service by trained personnel only.**

- Remove the two motor cover screws with Phillips screwdriver. Remove motor cover to expose motor fan, rotor, and coil assembly.
- 2. Pry off plastic fan with flat head screwdriver.
- 3. With Phillips screwdriver, remove the two coil screws and lock washers (set aside), then remove and discard the first plastic bearing bracket.
- 4. Take the coil out of the motor housing and set aside.
- 5. Remove the rotor assembly and second plastic bearing bracket and discard both.
- 6. Snap new plastic bearing bracket with tolerance ring into place.
- 7. Install new rotor assembly. Be sure the helical gear end of the shaft is inserted into the gear case.
- 8. Reinstall the coil over the rotor. When viewing from the fan end of the rotor shaft, the copper shaded pole on the coil is to the right.
- 9. Place the second plastic bearing bracket with tolerance ring through the rotor shaft and snap into place.
- 10. Reinstall the two coil screws and lock washers. Be sure to turn the self-tapping screws backwards, until they fall into the original threads of the motor housing to avoid stripping.
- 11. Tighten the coil screws down and press the fan (hub side down) back onto the rotor shaft.
- Reassemble motor cover. Turn screws counterclockwise to engage threads. Once engaged in threads, tighten screws clockwise.

CAM REPLACEMENT INSTRUCTIONS

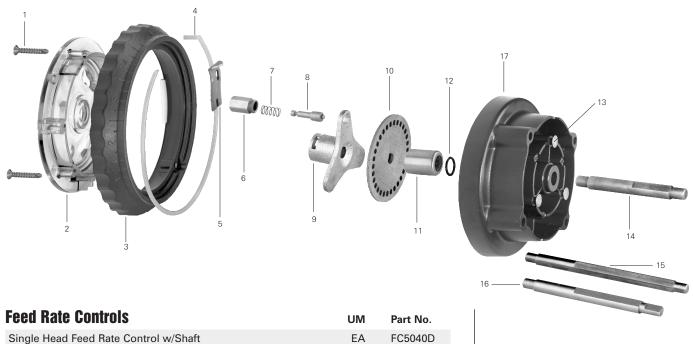
- Grasp the feed rate control, turn clockwise, and pull away to detach from the motor.
- Remove the three mounting plate screws and the mounting plate.
- Remove the feed rate dial and observe how the old cam is installed before removing it.
- 4. Remove old cam from guide slot.
- 5. Before installing the new cam, lubricate the angled tip with grease from the feed rate control.
- 6. Feed the angled tip into the slot while making sure that the 90-degree bent end is pointing in the correct direction (see above illustration). To keep the cam from rising up while inserting, place finger as a guide over the cam guide slot. Feed entire cam in until the angled tip is approximately 1/2" from contacting cam. Place the spider on the index plate so the lifter is in the 1/2" cam gap and the pin tip is in a hole in the index plate.
- Insert the 90-degree bent end of the cam into the dial ring boss (hole) and fit the dial ring on the feed rate housing.
- 8. Put the mounting plate back on the feed rate, aligning the arrows located on the mounting plate and feed rate housing.
- When replacing the mounting plate screws, start by turning the screws counterclockwise to engage the existing threads. Once properly engaged in threads, turn the screws clockwise.
- 10. Grasp the dial ring in one hand and the feed rate housing with the other hand with the arrow facing up. Turn the dial ring from L to 10 and back again. Dial ring should move easily without binding.


OUTPUT SPECIFICATIONS

												anono	@ 0011	2 (1611)	d Litto	rs @ 50	, ,	-,				
		I	-	•	I	:	2	3	3	4	1	!	5		6		7	;	8	9)	10
5M1	#1	0.2	0.6	0.3	0.9	0.6	1.8	0.9	2.7	1.2	3.6	1.5	4.5	1.8	5.5	2.1	6.4	2.4	7.3	2.7	8.2	3.0
5M2	#2	0.5	1.5	1.0	3.0	2.0	6.1	3.0	9.1	4.0	12.1	5.0	15.1	6.0	18.2	7.0	21.2	8.0	24.2	9.0	27.3	10.0
5M3	#3	1.1	3.3	2.2	6.6	4.4	13.3	6.6	20.0	8.8	26.6	11.0	33.3	13.2	40.0	15.4	46.6	17.6	53.3	19.8	60.0	22.0
5M4	#4	1.7	5.1	3.5	10.6	7.0	21.2	10.5	31.8	14.0	42.4	17.5	53.0	21.0	63.6	24.5	74.2	28.0	84.8	31.5	95.4	35.0 10
5M5	#5	2.5	7.6	5.0	15.1	10.0	30.3	15.0	45.4	20.0	60.6	25.0	75.7	30.0	90.8	35.0	106.0	40.0	121.1	45.0	136.3	50.0 15
eries 4	45 M	HP -	- Adj	usta	ble F	ligh	Pres	sure	e: 0 t	o 100) psi (6.9 k	oar) l	Vlaxi	mun	n Disc	harg	e Pre	essur	e		
10DEL	TUBE	F	EED R	ATE C	ONTRO	OL SE	TTING	Outp	uts pe	r day in	ı U.S. G	allons	@ 60⊦	lz (left)	8 Lite	rs @ 5	0Hz (rig	ıht)				
		ı	L	1		2	2	3		4	ļ	į	5	(6		7		8	9		10
5MHP2	#1	0.2	0.6	0.3	0.9	0.6	1.8	0.9	2.7	1.2	3.6	1.5	4.5	1.8	5.5	2.1	6.4	2.4	7.3	2.7	8.2	3.0 9
5MHP10	#2	0.5	1.5	1.0	3.0	2.0	6.1	3.0	9.1	4.0	12.1	5.0	15.1	6.0	18.2	7.0	21.2	8.0	24.2	9.0	7.3	10.0 30
5MHP22	#7	1.1	3.3	2.2	6.6	4.4	13.3	6.6	20.0	8.8	26.6	11.0	33.3	13.2	40.0	15.4	46.6	17.6	53.3	19.8	60.0	22.0 66
eries (85 M	_ Δ	dine	tahl	ه ا م	a, Pr	الععم	ra. () to 2)5 nei	i /1 7:) har	۱ Ma	vimı	ım D	ischa	rae F	Prace	IIIFA			
ODEL .			•							•	ı U.S. G		-				•		ui o			
			L		1		2	;	3	4	4		5		6		7		8		9	10
M1	#1	0.3	0.9	0.5	1.5	1.0	3.0	1.5	4.5	2.0	6.1	2.5	7.6	3.0	9.1	3.5	10.6	4.0	12.1	4.5	13.6	5.0
M2	#2	0.8	2.4	1.7	5.1	3.4	10.3	5.1	15.4	6.8	20.6	8.5	25.7	10.2	30.9	11.9	36.0	13.6	41.2	15.3	46.3	17.0
5M3	#3	2.0	6.1	4.0	12.1	8.0	24.2	12.0	36.3	16.0	48.5	20.0	60.6	24.0	76.7	28.0	84.8	32.0	96.9	36.0	109.0	40.0 1
5M4	#4	3.0	9.1	6.0	18.2	12.0	36.3	18.0	54.5	24.0	76.7	30.0	90.8	36.0	109.0	42.0	127.2	48.0	145.3	54.0	163.5	60.0 1
5M5	#5	4.3	13.0	8.5	25.7	17.0	51.5	25.5	77.2	34.0	103.0	42.5	128.7	51.0	154.4	59.5	180.0	68.0	205.9	76.5	231.6	85.0 2
Series (85 M	HP -	- Adi	iusta	ble l	liah	Pres	sure	: e: 0 t	o 100) psi ((6.9 l	oar) i	Vlaxi	mun	ı Disc	harq	e Pre	essui	re	,	,
10DEL			-			_					-											
			EED N	AIE					outs pe	r day in	ı U.S. G	allons	@ 60⊦	lz (left)) & Lite	rs @ 5	0Hz (rig					
			L L		1		2		outs pe		n U.S. G 4		@ 60⊦ 5		6	ers @ 50	0Hz (rig 7		8	,	9	10
5МНР5	#1		L		1	1.0	2 3.0						5		6	ers @ 50 3.5	7				9 13.6	10
		ı	L 0.9		1		_	;	3	4	4		5		6		7 10.6	ıht)	12.1	4.5		
MHP17	#2	0.3	L 0.9	0.5	1 1.5 5.1	1.0	3.0	1.5	4.5	2.0	4 6.1	2.5	5	3.0	6 9.1 30.9	3.5	7 10.6 36.0	ht) 4.0	12.1	4.5 15.3	13.6	5.0
5MHP17 5MHP40	#2 #7	0.3 0.8 2.0	0.9 2.4 6.1	0.5 1.7 4.0	1 1.5 5.1 12.1	1.0 3.4 8.0	3.0 10.3 24.2	1.5 5.1 12.0	3 4.5 15.4 36.3	2.0 6.8 16.0	6.1 20.6 48.5	2.5 8.5 20.0	7.6 25.7 60.6	3.0 10.2 24.0	6 9.1 30.9 76.7	3.5 11.9 28.0	7 10.6 36.0 84.8	4.0 13.6 32.0	12.1 41.2 96.9	4.5 15.3 36.0	13.6 46.3	5.0
5MHP17 5MHP40 Series	#2 #7	0.3 0.8 2.0	0.9 2.4 6.1	0.5 1.7 4.0	1 1.5 5.1 12.1	1.0 3.4 8.0	3.0 10.3 24.2 Pres	1.5 5.1 12.0	3 4.5 15.4 36.3 e: 0 to	2.0 6.8 16.0	6.1 20.6 48.5	2.5 8.5 20.0	5 7.6 25.7 60.6	3.0 10.2 24.0 Vlaxi	6 9.1 30.9 76.7	3.5 11.9 28.0	7 10.6 36.0 84.8 Sharg	4.0 13.6 32.0	12.1 41.2 96.9	4.5 15.3 36.0	13.6 46.3	5.0
5MHP17 5MHP40 Series	#2 #7	0.3 0.8 2.0	0.9 2.4 6.1	0.5 1.7 4.0	1 1.5 5.1 12.1 able L	1.0 3.4 8.0 ROL S	3.0 10.3 24.2 Pres	1.5 5.1 12.0	3 4.5 15.4 36.3 e: 0 to	2.0 6.8 16.0	4 6.1 20.6 48.5 psi (1	2.5 8.5 20.0	5 7.6 25.7 60.6 Dar) I	3.0 10.2 24.0 Vlaxi 0Hz (le	6 9.1 30.9 76.7 mum	3.5 11.9 28.0	7 10.6 36.0 84.8 Sharg	4.0 13.6 32.0	12.1 41.2 96.9	4.5 15.3 36.0	13.6 46.3	5.0
5MHP17 5MHP40 Series MODEL	#2 #7	0.3 0.8 2.0	0.9 2.4 6.1 - Adj	0.5 1.7 4.0 justa	1 1.5 5.1 12.1 able L	1.0 3.4 8.0 ROL S	3.0 10.3 24.2 Pres SETTIN	1.5 5.1 12.0 sure G: Ou	3 4.5 15.4 36.3 e: 0 to	2.0 6.8 16.0 0 25	4 6.1 20.6 48.5 psi (1	2.5 8.5 20.0 . 72 k Gallor	5 7.6 25.7 60.6 Dar) I	3.0 10.2 24.0 Vlaxi 0Hz (le	6 9.1 30.9 76.7 mum	3.5 11.9 28.0 Disc iters @	7 10.6 36.0 84.8 Sharg	4.0 13.6 32.0 e Pre	12.1 41.2 96.9	4.5 15.3 36.0	13.6 46.3 109.0	5.0 17.0 40.0 1
5MHP17 5MHP40 Series MODEL 00DM1	#2 #7 100 TUBE	0.3 0.8 2.0 DM -	0.9 2.4 6.1 - Adj	0.5 1.7 4.0 justa RATE	1 1.5 5.1 12.1 able I	1.0 3.4 8.0 -OW	3.0 10.3 24.2 Pres 6ETTIN	1.5 5.1 12.0 sure G: Ou	3 4.5 15.4 36.3 e: 0 to	2.0 6.8 16.0 0 25 per day	4 6.1 20.6 48.5 psi (1	2.5 8.5 20.0 . 72 k Gallor 5	5 7.6 25.7 60.6 oar) ns @ 6	3.0 10.2 24.0 Vlaxi 0Hz (le 3.6	6 9.1 30.9 76.7 mum	3.5 11.9 28.0 Disc iters @ 7	7 10.6 36.0 84.8 50Hz (4.0 13.6 32.0 e Pre right) 8	12.1 41.2 96.9	4.5 15.3 36.0 ••e	13.6 46.3 109.0	5.0 17.0 40.0 1 10 6.0 18
Series MODEL 000DM1	#2 #7 100 TUBE #1	0.3 0.8 2.0 DM -	0.9 2.4 6.1 - Adj FEED	0.5 1.7 4.0 justa RATE 1 0.6 2.0	1 1.5 5.1 12.1 hble I CONT	1.0 3.4 8.0 FROL S	3.0 10.3 24.2 Pres SETTIN 2 3.6 12.1	1.5 5.1 12.0 Sure G: Ou	3 4.5 15.4 36.3 e: 0 to	2.0 6.8 16.0 0 25 per day	4 6.1 20.6 48.5 psi (1 in U.S. 4 7.3	2.5 8.5 20.0 . 72 k Gallor 5 3.0	7.6 25.7 60.6 Dar) I ns @ 6	3.0 10.2 24.0 Vlaxi 0Hz (le 6 3.6	6 9.1 30.9 76.7 mum eft) & L 10.9 36.4	3.5 11.9 28.0 1 Disc iters @ 7 4.2	7 10.6 36.0 84.8 50Hz (4.0 13.6 32.0 e Pre right) 8 4.8	12.1 41.2 96.9 98SUR 14.5 48.5	4.5 15.3 36.0 *e 5.4	13.6 46.3 109.0	5.0 17.0 40.0 1 10 6.0 18
Series MODEL DODM1 DODM2 DODM3	#2 #7 100 TUBE #1 #2	0.3 0.8 2.0 DM -	0.9 2.4 6.1 - Adj FEED 0.9 3.0	0.5 1.7 4.0 justa RATE 1 0.6 2.0 4.4	1 1.5 5.1 12.1 12.1 12.1 1.8 6.1	1.0 3.4 8.0	3.0 10.3 24.2 Pres SETTIN 2 3.6 12.1	1.5 5.1 12.0 sure G: Ot 1.8 6.0 13.2	3 4.5 15.4 36.3 e: 0 to to	2.0 6.8 16.0 o 25 per day	4 6.1 20.6 48.5 psi (1 7.3 24.2	2.5 8.5 20.0 . 72 k Gallor 5 3.0 10.0 22.0	5 7.6 25.7 60.6 25.7 60.6 9.1 30.3 66.6	3.0 10.2 24.0 Vlaxi 0Hz (le 6 3.6 12.0 26.4	6 9.1 30.9 76.7 mum eft) & L 10.9 36.4 79.9	3.5 11.9 28.0 1 Disc iters @ 7 4.2	7 10.6 36.0 84.8 50Hz (12.7 42.4 93.3	4.0 13.6 32.0 e Pre right) 8 4.8 16.0 35.2	12.1 41.2 96.9 14.5 48.5	4.5 15.3 36.0 *e 5.4 18.0 § 39.6	13.6 46.3 109.0 16.4 54.5 2	5.0 17.0 40.0 1 10 6.0 18 6.0
Series MODEL DODM1 DODM2 DODM3 DODM4	#2 #7 100 TUBE #1 #2 #3	0.3 0.8 2.0 DM - 0.3 1.0 2.2 3.5	0.9 2.4 6.1 FEED 0.9 3.0 6.7 10.6	0.5 1.7 4.0 1 RATE 1 0.6 2.0 4.4 7.0	1 1.5 5.1 12.1 12.1 1.8 6.1 13.3	1.0 3.4 8.0	3.0 10.3 24.2 Pres SETTIN 2 3.6 12.1 26.7	1.5 5.1 12.0 Sure G: Ou 3 6.0 13.2 21.0	3 4.5 15.4 36.3 e: 0 to to	2.0 6.8 16.0 0 25 per day 4 2.4 8.0 17.6	4 6.1 20.6 48.5 psi (1 7.3 24.2 53.3	2.5 8.5 20.0 . 72 k Gallor 5 3.0 10.0 22.0 35.0	5 7.6 25.7 60.6 25.7 60.6 9.1 30.3 66.6 106.0	3.0 10.2 24.0 Vlaxi 0Hz (le 6 3.6 12.0 26.4 42.0	6 9.1 30.9 76.7 Turn of t) & L 10.9 36.4 79.9 127.2	3.5 11.9 28.0 1 Disc iters @ 7 4.2 14.0 30.8	7 10.6 36.0 84.8 Sharg 50Hz (12.7 42.4 93.3 48.4	4.0 13.6 32.0 e Pre right) 8 4.8 16.0 35.2 1 56.0	12.1 41.2 96.9 14.5 48.5 106.6 169.6	4.5 15.3 36.0 'e 9 5.4 18.0 § 39.6 11	13.6 46.3 109.0 16.4 54.5 20 19.9 4	5.0 17.0 40.0 1 10 6.0 18 6.0 60 4.0 133
Series MODEL DODM1 DODM2 DODM3 DODM4 DODM5	#2 #7 100 TUBE #1 #2 #3 #4	0.3 0.8 2.0 DM - 0.3 1.0 2.2 3.5 5.0	0.9 2.4 6.1 FEED 0.9 3.0 6.7 10.6 15.1	0.5 1.7 4.0 1 1.7 4.0 1 1.0 1 1.0 1 1.7 1	1 1.5 5.1 12.1 able I CONT 1.8 6.1 13.3 21.2 30.3	1.0 3.4 8.0 LOW ROL \$ 1.2 4.0 8.8 14.0 20.0	3.0 10.3 24.2 Pres SETTIN 2 3.6 12.1 26.7 42.4 60.6	1.5 5.1 12.0 SUFE G: Ot 3 1.8 6.0 13.2 21.0 30.0	3 4.5 15.4 36.3 e: 0 to to	2.0 6.8 16.0 O 25 per day 2.4 8.0 17.6 28.0 40.0	4 6.1 20.6 48.5 Fin U.S. 7.3 24.2 53.3 84.8 121.1	2.5 8.5 20.0 .72 k Gallor 5 3.0 10.0 22.0 35.0 50.0	7.6 25.7 60.6 Dar) I 9.1 30.3 66.6 106.0	3.0 10.2 24.0 Maxi 0Hz (lec 6 3.6 12.0 26.4 42.0 660.0	6 9.1 30.9 76.7 10.9 36.4 79.9 127.2 181.7	3.5 11.9 28.0 1 Discoiters @ 7 4.2 14.0 30.8 49.0 1 70.0 2	7 10.6 36.0 84.8 Sharg 50Hz (12.7 42.4 93.3 48.4 212.0	4.0 13.6 32.0 e Pre right) 8 4.8 16.0 35.2 1 56.0 1 80.0 2	14.5 48.5 106.6 169.6 242.2	4.5 15.3 36.0 'e 9 5.4 18.0 18.0 39.6 17.663.0 18.90.0 27.0	13.6 46.3 109.0 16.4 54.5 20 19.9 4	5.0 17.0 40.0 1 10 6.0 18 6.0 6.0 4.0 133 6.0 212
Series MODEL DODM1 DODM2 DODM3 DODM4 DODM5 Series	#2 #7 100 TUBE #1 #2 #3 #4	0.3 0.8 2.0 DM - = 0.3 1.0 2.2 3.5 5.0	0.9 2.4 6.1	0.5 1.7 4.0 justa RATE 1 0.6 2.0 4.4 7.0 10.0	1 1.5 5.1 12.1 12.1 13.3 21.2 30.3 stabl	1.0 3.4 8.0 LOW ROL \$\frac{1}{2}\$ 4.0 8.8 14.0 20.0 E Hill	3.0 10.3 224.2 Pres SETTIN 2 12.1 26.7 42.4 60.6	1.5 5.1 12.0 Sure G: Ou 3 1.8 6.0 13.2 21.0 30.0 ress	3 4.5 15.4 36.3 e: 0 to	2.0 6.8 16.0 0 25 per day 4 2.4 8.0 17.6 28.0 40.0	4 6.1 20.6 48.5 Fin U.S. 7.3 24.2 53.3 84.8 121.1	2.5 8.5 20.0 .72 k Gallor 5 3.0 10.0 22.0 35.0 50.0	9 bal	3.0 10.2 24.0 Maxi 0Hz (le 6 3.6 12.0 26.4 42.0 60.0	9.1 30.9 76.7 mum 10.9 36.4 79.9 127.2 181.7	3.5 11.9 28.0 n Disc iters @ 7 4.2 14.0 30.8 49.0 1 70.0 2 um D	7 10.6 36.0 84.8 Sharg 50Hz (12.7 42.4 93.3 48.4 212.0 Dischard	4.0 13.6 32.0 e Pre right) 8 4.8 16.0 35.2 1 56.0 1 80.0 2	14.5 48.5 106.6 169.6 242.2	4.5 15.3 36.0 'e 9 5.4 18.0 18.0 39.6 17.663.0 18.90.0 27.0	13.6 46.3 109.0 16.4 54.5 20 19.9 4	5.0 17.0 40.0 1 10 6.0 18 6.0 6.0 4.0 133 6.0 212
Series MODEL MODEL MODM1 MODM2 MODM3 MODM4 MODM5 MODM5	#2 #7 100 TUBE #1 #2 #3 #4 #5	0.3 0.8 2.0 DM - = 0.3 1.0 2.2 3.5 5.0	0.9 2.4 6.1	0.5 1.7 4.0 iusta RATEE 1 0.6 2.0 4.4 7.0 10.0 RATEE	1 1.5 5.1 12.1 12.1 13.3 21.2 30.3 stabl	1.0 3.4 8.0	3.0 10.3 224.2 Pres SETTIN 2 12.1 26.7 42.4 60.6	1.5 5.1 12.0 Sure G: Ou 3 1.8 6.0 13.2 21.0 30.0 ress	3 4.5 15.4 36.3 e: 0 to	2.0 6.8 16.0 0 25 per day 4 2.4 8.0 17.6 28.0 40.0	4 6.1 20.6 48.5 Psi (1 7.3 24.2 53.3 84.8 121.1 100 p	2.5 8.5 20.0 .72 k Gallor 5 3.0 10.0 22.0 35.0 50.0	5 7.6 25.7 60.6 25.7 60.6 9.1 30.3 66.6 106.0 151.4 9 bal s (left)	3.0 10.2 24.0 Maxi 0Hz (le 6 3.6 12.0 26.4 42.0 60.0	9.1 30.9 76.7 mum 10.9 36.4 79.9 127.2 181.7	3.5 11.9 28.0 n Disc iters @ 7 4.2 14.0 30.8 49.0 1 70.0 2 um D	7 10.6 36.0 84.8 50Hz (12.7 42.4 93.3 48.4 212.0 Dischalation (ht)	4.0 13.6 32.0 e Pre right) 8 4.8 16.0 35.2 1 56.0 1 80.0 2	14.5 48.5 106.6 169.6 242.2	4.5 15.3 36.0 'e 9 5.4 18.0 18.0 39.6 17.663.0 18.90.0 27.0	13.6 46.3 109.0 16.4 54.5 20 19.9 4	5.0 17.0 40.0 1 10 6.0 18 6.0 6.0 4.0 133 6.0 212
5MHP5 5MHP40 Series MODEL 00DM1 00DM2 00DM3 00DM4 00DM5 Series MODEL	#2 #7 100 TUBE #1 #2 #3 #4 #5	0.3 0.8 2.0 DM - 0.3 1.0 2.2 3.5 5.0 DMH	0.9 2.4 6.1	0.5 1.7 4.0 iusta RATEE 1 0.6 2.0 4.4 7.0 10.0 RATEE	1 1.5 5.1 12.1 12.1 13.3 21.2 30.3 stable CONT	1.0 3.4 8.0	3.0 110.3 224.2 Pres EETTIN 2 12.1 26.7 42.4 60.6 EETTIN 2	1.5 5.1 12.0 Sure G: Ou 3 1.8 6.0 13.2 21.0 30.0 ress G:Ou 3	3 4.5 15.4 36.3 e: 0 to	2.0 6.8 16.0 0 25 per day 4 2.4 8.0 17.6 28.0 40.0	4 6.1 20.6 48.5 Psi (1 7.3 24.2 53.3 84.8 121.1 100 p in U.S.	2.5 8.5 20.0 .72 k Gallor 5 3.0 10.0 22.0 35.0 50.0 si (6.	9.1 30.3 66.6 106.0 151.4 9 balss (left)	3.0 10.2 24.0 Maxi 0Hz (le 6 3.6 12.0 26.4 42.0 60.0	9.1 30.9 76.7 mum oft) & L 10.9 36.4 79.9 127.2 181.7 axim	3.5 11.9 28.0 n Disc iters @ 7 4.2 14.0 30.8 49.0 1 70.0 2 um D 0Hz (rig	7 10.6 36.0 84.8 Scharg 50Hz (12.7 42.4 93.3 48.4 212.0 Dischall (ht)	4.0 13.6 32.0 e Pre right) 8 4.8 16.0 35.2 1 80.0 2 arge	14.5 48.5 169.6 169.6 1242.2 196.9	4.5 15.3 36.0 7e 9 5.4 118.0 \$39.6 1163.0 1990.0 27	13.6 46.3 109.0 16.4 19.9 4. 19.9 4. 19.9 72.510	5.0 17.0 40.0 1 10 6.0 6.0 18 6.0 4.0 133 6.0 212 6.0 302

OUTPUT SPECIFICATIONS

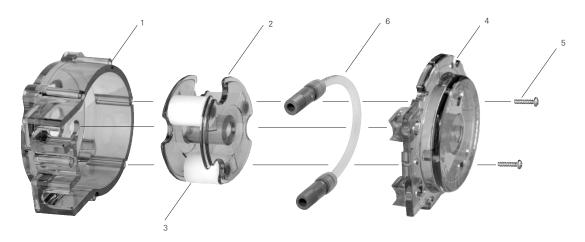
	TUB	E	EED F	RATE (CONT	ROL SE	TTING	: Outp	uts per	day in	U.S. Ga	llons	@ 60H	z (left) & Lite	rs @ 5	OUS (HI	ght) for	Pililia	ry feed	d rate of	only
			L		1		2	3	· !	4	1	Ę		6	3	7		8	` }	9	,	10
00MDC1	#1	0.2	-	0.3	0.9	0.6	- 1.8	0.9	2.7	1.2	3.6	1.5 l		1.8	5.5	2.1	6.4	2.4	7.3	2.7		3.0
00MDC2		0.5	1.5	1.0	3.0		6.1	3.0	9.1		12.1		15.1	6.0	18.2	7.0	21.2	8.0	24.2		27.3	
00MDC3		1.1	3.3	2.2	6.6		13.3		20.0					13.2	40.0	15.4	46.6	17.6	53.3		60.0	
00MDC4		1.7	5.1	3.5	10.6		21.2							21.0	63.6	24.5	74.2	28.0	84.8		95.4	
00MDC5	#5	2.5	7.6	5.0	15.1	10.0	30.3	15.0	45.4	20.0	60.6	25.0	75.7	30.0	90.9	35.0	106.0	40.0	121.1	45.0	136.3	50.0 1
Series 1	100 1	MDCF	IP – /	Adiu	stab	ole Hid	ah Pı	essu	re: 0	to 1	00 ps	i (6.9	9 bar) Ma	aximı	ım D	ischa	rae	Press	sure		
/ODEL				-		ONTROI	_				-	-		-				•			feed r	ate on
NODEL		100						iivo. c	·	per de	•	. Gair	_	00112		LITOIS				,		
				L	1		2		3		4		5		6		7		8		9	10
00MDCH	P5	#1		0.6	0.3		0.6 1.		0.9 2.7		2 3.6	1.	5 4.5	1.8	8 5.5			2.4		2.7	8.2	3.0
00MDCH	P20	#2	0.5	1.5	1.0	3.0	2.0 6	.1 3	3.0 9.1	4.	0 12.1	5.	0 15.1	6.0	0 18.2	7.0	21.2	8.0	24.3	9.0	27.3	10.0
				'	'		'		'		'		'						'		'	'
eries	170	DM -	Adjı	ustal	ole I	Low F	ress	ure:	0 to 2	25 ps	si (1.7	2 ba	r) M	axin	num l	Disch	narge	Pres	ssure			
10DEL	TUB	E	FEED	RATE	CONT	TROL SE	ETTING	: Outp	uts per	day in	U.S. G	allons	@ 60	Hz (let	ft) & Lit	ers @	50Hz (r	ight)				
			L		1		2		3	4		5			6	-	,	8	2	9		10
70DM1	#1	0	.5 1.	5 1.0		.0 2.0		3.0		4.0	12.1	5.0			18.2	-	21.2	8.0	24.2		27.3	
70DM2	#2		.7 5.					9.5	28.8	13.6		17.0		20.4	61.8	23.8		27.2	82.4		92.7	
	#3		.0 12.					24.0	72.7	32.0		40.0		48.0				64.0			218.0	
70DM3																						
70DM4	#4			2 12.0				36.0		48.0		60.0	181.7		218.0		1	96.0			327.01	
70DM5	#5	8	.5 25.	7 17.0	51.	5 34.0	86.0	51.0	154.4	68.0	205.9	85.0	257.4	102.0	308.9	119.0	360.4	136.0	411.8	153.0	463.31	70.0 5
Series 1	70 I	MHP	- A	diust	table	e Hiał	ı Pre	ssur	e: 0 t	o 10	0 psi	(6.9	bar)	Мах	imur	n Dis	char	ae Pi	ressu	ıre		
/ODEL	TU			-		TROL S					-							_				
.0522		-						J. 041		,		, a	_			.0.0 @			•	_		
70014110	o "	1	L 0.5.1.1		1	0.0	2	1 00	3		4	F 0	5	0.0	6	7.0	7		8	9		10.0
70DMHP			0.5 1			3.0 2.0				4.0		5.0		6.0			21.2		24.2		27.3	
	34 #	2	1.7 5	5.1 3	3.4 1	0.3 6.	0 18.:	2 9.5	28.8	12.9	39.1	17.0	51.5	20.4	61.8	23.8	72.1	27.2	82.4	30.6	92.7	34.0 1
70DMHP			ļ		ı		ı		ı		1		ı		ı		ı		I	-		ı
70DMHP																						
70DMHP													\ N	Лахі	imum	Die		Dw.		'		
	170	MDC	– Ad	ljusta	able	Low	Pres	sure	: 0 to	25 _l	osi (1.	72 k	oar) I		III	יכוטו	charg	je rr	essur	•		
Series				-		Low				-	-		-	Hz (lef			_				d rate	only
Series		Ε	FEED	RATE	CONT	TROL SE	ETTING	i: Outp		r day ir	-	allons	@ 60H			ers @ 5	_	ght) fo	r prima	ary fee		
Series MODEL	TUE	E I	FEED	RATE 1	CONT	TROL SE	ETTING	: Outp	outs per	day ir	ı U.S. G	allons 5	@ 60H	6	t) & Lite	ers @ { 7	50Hz (ri	ght) fo	r prima	ary fee		10
Series MODEL 70MDC1	TUE	0.3	FEED 0.9	RATE 1 0.5	CONT 1.5	TROL SE 2	ETTING	3 1.5	outs per	day ir 4	6.1 2	5	@ 60H	6	t) & Lite	ers @ 5	50Hz (ri 10.6	ght) fo 8 4.0	or prima	9 4.5	13.6	5.0
Series MODEL 70MDC1 70MDC2	#1 #2	0.3 0.8	FEED 0.9 2.4	RATE 1 0.5 1.7	1.5 5.1	1.0 3.4	3.0 10.3	3 1.5 5.1	outs per 4.5 5.4	4 2.0 6.8	6.1 2	5 2.5 3.5	7.6 25.7	3.0	9.1 30.9	7 3.5 11.9	50Hz (ri 10.6 36.0	ght) fo 8 4.0 13.6	12.1 41.2	9 4.5 15.3	13.6 46.3	5.0 17.0
Series MODEL 70MDC1 70MDC2 70MDC3	#1 #2 #3	0.3 0.8 2.0	0.9 2.4 6.1	RATE 1 0.5 1.7 4.0	1.5 5.1 12.1	1.0 3.4 8.0 2	3.0 10.3 24.2 1	3 1.5 5.1 1 2.0 3	4.5 5.4 6.3 1	2.0 6.8 2	6.1 2 20.6 8	5.5 3.5 3.0.0 0.0	7.6 25.7	3.0 10.2 24.0	9.1 30.9 76.7	3.5 11.9 28.0	10.6 36.0 84.8	ght) fo 8 4.0 13.6 32.0	12.1 41.2 96.9	9 4.5 15.3 36.0	13.6 46.3 109.0	5.0 17.0 40.0
Series MODEL 70MDC1 70MDC2 70MDC3	#1 #2 #3	0.3 0.8	FEED 0.9 2.4	RATE 1 0.5 1.7 4.0	1.5 5.1	1.0 3.4 8.0 2	3.0 10.3	3 1.5 5.1 1 2.0 3	4.5 5.4 6.3 1	2.0 6.8 2	6.1 2	5.5 3.5 3.0.0 0.0	7.6 25.7	3.0 10.2 24.0	9.1 30.9 76.7 109.0	7 3.5 11.9 28.0 42.0	10.6 36.0 84.8	ght) fo 8 4.0 13.6 32.0 48.0	12.1 41.2 96.9 145.3	4.5 15.3 36.0 54.0	13.6 46.3 109.0 163.5	5.0 17.0 40.0 1
Series MODEL 70MDC1 70MDC2 70MDC3 70MDC3	#1 #2 #3 #4	0.3 0.8 2.0	0.9 2.4 6.1 9.1	RATE 1 0.5 1.7 4.0 6.0	1.5 5.1 12.1 18.2	1.0 3.4 8.0 2	3.0 10.3 24.2 1 36.3 1	3 1.5 5.1 1.2.0 3 8.0 5	4.5 5.4 66.3 1	4 2.0 6.8 2 6.0 4	6.1 2 20.6 8	5.5 3.5 3.0 0.0 9.0 9.0	7.6 25.7	3.0 10.2 24.0 86.0	9.1 30.9 76.7 109.0	7 3.5 11.9 28.0 42.0	10.6 36.0 84.8	ght) fo 8 4.0 13.6 32.0 48.0	12.1 41.2 96.9	4.5 15.3 36.0 54.0	13.6 46.3 109.0 163.5	5.0 17.0 40.0 1
Series MODEL 70MDC1 70MDC2 70MDC3 70MDC4 70MDC5	#1 #2 #3 #4 #5	0.3 0.8 2.0 3.0 4.3	0.9 2.4 6.1 9.1	RATE 1 0.5 1.7 4.0 6.0 8.5	1.5 5.1 12.1 18.2 25.7	1.0 3.4 12.0 17.0 5	3.0 10.3 24.2 1 36.3 1 51.5 2	3 1.5 5.1 1.2.0 3 8.0 5.5 7	4.5 5.4 66.3 1 44.5 2	2.0 6.8 2 6.0 4 4.0 7 10	6.1 2 20.6 8 48.5 20 76.7 30	3.5 3.5 3.0 0.0 9.2.5 12	7.6 25.7 1 60.6 2 90.8 3	3.0 10.2 24.0 36.0 1	9.1 30.9 76.7 109.0	7 3.5 11.9 28.0 42.0 1 59.5 1	10.6 36.0 84.8 27.2	ght) fo 8 4.0 13.6 32.0 48.0 68.0	12.1 41.2 96.9 145.3 205.9	4.5 15.3 36.0 54.0 76.5	13.6 46.3 109.0 163.5	5.0 17.0 40.0 1
Series MODEL 70MDC1 70MDC2 70MDC3 70MDC4 70MDC5	#1 #2 #3 #4 #5	0.3 0.8 2.0 3.0 4.3	0.9 2.4 6.1 9.1	RATE 1 0.5 1.7 4.0 6.0 8.5	1.5 5.1 12.1 18.2 25.7	1.0 3.4 12.0 17.0 5	3.0 10.3 24.2 1 36.3 1 51.5 2	3 1.5 5.1 1.2.0 3 8.0 5.5 7	4.5 5.4 66.3 1 44.5 2	2.0 6.8 2 6.0 4 4.0 7 10	6.1 2 20.6 8 48.5 20 76.7 30	3.5 3.5 3.0 0.0 9.2.5 12	7.6 25.7 1 60.6 2 90.8 3	3.0 10.2 24.0 36.0 1	9.1 30.9 76.7 109.0	7 3.5 11.9 28.0 42.0 1 59.5 1	10.6 36.0 84.8 27.2	ght) fo 8 4.0 13.6 32.0 48.0 68.0	12.1 41.2 96.9 145.3 205.9	4.5 15.3 36.0 54.0 76.5	13.6 46.3 109.0 163.5	5.0 17.0 40.0 1
Series MODEL 70MDC1 70MDC2 70MDC3 70MDC4 70MDC5	#1 #2 #3 #4 #5	0.3 0.8 2.0 3.0 4.3	0.9 2.4 6.1 9.1 13.0	RATE 1 0.5 1.7 4.0 6.0 8.5 Adju	1.5 5.1 12.1 18.2 25.7	1.0 3.4 12.0 17.0 5	3.0 10.3 24.2 1 36.3 1 51.5 2	3 1.5 5.1 1 2.0 3 8.0 5 5.5 7	4.5 5.4 66.3 1 44.5 2 77.2 3	2.0 6.8 2 6.0 4 7 4 10 10 10 10 10 10 10	1 U.S. G 6.1 2 20.6 8 48.5 20 76.7 30 3.0 42	5.5 3.5 3.5 3.0 0.0 9.1 1.5	7.6 25.7 60.6 28.7 9 bar	6 3.0 10.2 24.0 36.0 51.0	9.1 30.9 76.7 109.0 154.4	7 3.5 11.9 28.0 42.0 59.5	10.6 36.0 84.8 27.2 180.0	9ht) fo 8 4.0 13.6 32.0 48.0 68.0	12.1 41.2 96.9 145.3 205.9	4.5 15.3 36.0 54.0 76.5	13.6 46.3 109.0 163.5 231.6	10 5.0 17.0 140.0 160.0 135.0
Series MODEL 70MDC1 70MDC2 70MDC3 70MDC4 70MDC5	#1 #2 #3 #4 #5	0.3 0.8 2.0 3.0 4.3	0.9 2.4 6.1 9.1 13.0	RATE 1 0.5 1.7 4.0 6.0 8.5 Adju ED RA	1.5 5.1 12.1 18.2 25.7	1.0 3.4 4 8.0 2 17.0 5 5 5 6 6 6 6 6 6 6	3.0 10.3 24.2 1 36.3 1 51.5 2	3 1.5 5.1 1 2.0 3 8.0 5 5.5 7	4.5 5.4 66.3 1 44.5 2 77.2 3	2.0 6.8 2 6.0 4 7 4 10 10 10 10 10 10 10	1 U.S. G 6.1 2 20.6 8 48.5 20 76.7 30 3.0 42	5.5 3.5 3.5 3.0 0.0 9.1 1.5	7.6 25.7 60.6 28.7 9 bar	6 3.0 10.2 24.0 36.0 51.0	9.1 30.9 76.7 109.0 154.4	7 3.5 11.9 28.0 42.0 59.5	10.6 36.0 84.8 27.2 180.0	ght) fo 8 4.0 13.6 32.0 48.0 68.0 arge	12.1 41.2 96.9 145.3 205.9	4.5 15.3 36.0 54.0 76.5	13.6 46.3 109.0 163.5 231.6	10 5.0 17.0 140.0 160.0 135.0
Series MODEL 70MDC1	#1 #2 #3 #4 #5	0.3 0.8 2.0 3.0 4.3	0.9 2.4 6.1 9.1 13.0	RATE 1 0.5 1.7 4.0 6.0 8.5 Adju ED RA	1.5 5.1 12.1 18.2 25.7	1.0 3.4 4 8.0 2 17.0 5 5 5 5 6 6 6 6 6 6	3.0 10.3 24.2 1 36.3 1 51.5 2 gh Pi	3 1.5 5.1 12.0 3 8.0 5.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.5 5.4 66.3 1 64.5 2 77.2 3	2.0 6.8 2 6.0 4.0 7 10 10 10 10 10 10 10	6.1 220.6 848.5 2076.7 303.0 42	5.5 3.5	7.6 25.7 60.6 28.7 8 9 bar ons @	6 3.0 10.2 24.0 1551.0 1 1 1 1 1 1 1 1 1	9.1 30.9 76.7 109.0 154.4 aximi (left) &	7 3.5 11.9 28.0 42.0 59.5	10.6 36.0 84.8 27.2 80.0 Discha	ght) fo 8 4.0 13.6 32.0 48.0 68.0 arge (right)	12.1 41.2 96.9 145.3 205.9 Press	4.5 15.3 36.0 54.0 76.5 sure	13.6 46.3 109.0 163.5 231.6	10 5.0 17.0 40.0 1 60.0 1 35.0 2


MOTOR ASSEMBLIES AND PARTS

21		
Gear Motor Assemblies for Adjustable Rate Models	UIV	l Part No.
Series 45 & 100 – Complete Gear Motor 120VAC 60Hz	EA	PM6041D
Series 45 & 100 – Complete Gear Motor 220VAC 60Hz	EA	PM6042D
Series 45 & 100 – Complete Gear Motor 230VAC 50Hz	EA	PM64230
Series 45 & 100 – Complete Gear Motor 250VAC 50Hz	EA	PM6426D
Series 85 & 170 – Complete Gear Motor 120VAC 60Hz	EA	PM6081D
Series 85 & 170 – Complete Gear Motor 220VAC 60Hz	EA	PM6082D
Series 85 & 170 – Complete Gear Motor 230VAC 50Hz	EA	PM68230
Series 85 & 170 – Complete Gear Motor 250VAC 50Hz	EA	PM6826D
Gear Motor Assemblies for Single Head-Fixed Rate Models	UN	l Part No.
Series 45MP – Complete Gear Motor 120VAC 60Hz	EA	ME6041D
Series 45MP – Complete Gear Motor 220VAC 60Hz	EA	ME6042D
Series 45MP – Complete Gear Motor 230VAC 50Hz	EA	ME64230
Series 45MP – Complete Gear Motor 250VAC 50Hz	EA	ME6426D
Series 85MP – Complete Gear Motor 120VAC 60Hz	EA	ME6081D
Series 85MP – Complete Gear Motor 220VAC 60Hz	EA	ME6082D
Series 85MP – Complete Gear Motor 230VAC 50Hz	EA	ME68230
Series 85MP – Complete Gear Motor 250VAC 50Hz	EA	ME6826D
Gear Motor Assemblies for Double Head-Fixed Rate Models	S UN	I Part No.
Series 100DMP – Complete Gear Motor 120VAC 60Hz	EA	DM6041D
Series 100DMP - Complete Gear Motor 220VAC 60Hz	EA	DM6042D
Series 100DMP – Complete Gear Motor 230VAC 50Hz	EA	DM64230
Series 100DMP - Complete Gear Motor 250VAC 50Hz	EA	DM64250
Series 170DMP - Complete Gear Motor 120VAC 60Hz	EA	DM6081D
Series 170DMP - Complete Gear Motor 220VAC 60Hz	EA	DM6082D
Series 170DMP – Complete Gear Motor 230VAC 50Hz	EA	DM68230
Series 170DMP – Complete Gear Motor 250VAC 50Hz	EA	DM68250
Gear Motor Parts	UM	Part No.
1- Motor Cover with Cord (120VAC)	EA	PM6A0BL
Motor Cover with Cord (220VAC)	EA	PM6A0OL
2- On-Off Switch Plate	EA	MP6D000
3- Switch Boot	EA	MP6C000
_		

Gear	Motor PartsContinued	UM	Part No.
4-	Toggle Switch	EA	PM6E000
	Wire Connector not shown	EA	PM6E001
5-	Power Cord 120VAC	EA	MP6B010
	Power Cord 220VAC	EA	MP6B020
6-	Strain Relief Bushing	EA	MP6V000
7-	Motor Fan	EA	PM6F000
889-	Coil Screw "G" w/Lock Washer	EA	PMS00G1
10-	Rotor Assembly with Bearings,		
	Brackets and Tolerance Rings	EA	PMBRPL2
11-	Coil 120VAC 60Hz	EA	MP6J115
	Coil 220VAC 60Hz	EA	MP6J226
	Coil 230VAC 50Hz International	EA	MP6J223
	Coil 250VAC 50Hz International	EA	MP6J222
12-	Gear Case	EA	PM6K0BL
	Motor Shaft Cup Bearing not shown	EA	PM6K001
13-	Gear Case Cover	EA	PM6R0BL
14-	Gear Posts	EA	PM6M000
15-	Thrust Washer	EA	MP6P000
16-	Phenolic Gear w/Gear Spacer (26 RPM - Series 45 & 100)	EA	MP6N040
	Phenolic Gear w/Gear Spacer (44 RPM - Series 85 & 170)	EA	MP6N080
	Phenolic Gear Spacer not shown	EA	PM6M001
17-	Metal Reduction Gear (26 RPM - Series 45 & 100)	EA	MP6O040
	Metal Reduction Gear (44 RPM - Series 85 & 170)	EA	MP6O080
18-	Motor Shaft w/Gear (Adjustable Rate Models)	EA	MP6Q00D
	Motor Shaft w/Gear (Single Head - Fixed Rate Models)	EA	ME6Q0LD
	Motor Shaft w/Gear (Double Head - Fixed Rate Models)	EA	DM6Q0LD
19-	Pressure Spring	EA	MP6T000
20-	Motor Base	EA	MP70000
21-	Motor Base Screw "D"	EA	PMS000D
22-	Mounting Bracket	EA	MP80000
23-	Rain Roof	EA	MP90000
24-	Cover Screw "B" (Package of 10)	PK	UCCPS0B
	Cover Screw "B" (Package of 24)	PK	MCCPS0B
	Coil Ground Screw "E" not shown	EA	PMS000E

FEED RATE CONTROLS AND PARTS


3		
Double Head Feed Rate Control w/Shaft	EA	DM5040D
Dual Head Dual Control Feed Rate Control w/Shaft	EA	DM504DC
Feed Rate Parts	UM	Part No.
1- FRC Screw "A"	EA	FCS000A
2- Feed Rate Mounting Plate	EA	FC5N000
3- Dial Ring	EA	FC5M040
4- Variable Cam (Package of 2)	PK	UCFC5H0
Variable Cam (Package of 5)	PK	MCFC5H0
Index Pin Assembly with Lifter (Package of 1) not shown	PK	UCFC5AY
Index Pin Assembly with Lifter (Package of 2) not shown	PK	MCFC5AY
5- Index Pin Lifter (Package of 2)	PK	UCFC5L1
Index Pin Lifter (Package of 5)	PK	MCFC5L1
6- Index Pin Holder	EA	FC5L003
7- Index Pin Spring	EA	FC5L005
8- Index Pin	EA	FC5L002
9- Index Spider	EA	FC5K00D
10- Index Plate (Package of 1)	PK	UCFC5ID
Index Plate (Package of 5)	PK	MCFC5ID
11- Roller Clutch	EA	FC5F000
12- O-Ring Seal 3/8"	EA	FC5E000
13- Mounting Rivet "C"	EA	FCS000C
14- Main Shaft for Single Head-Adjustable Rate (Package of	1) PK	UCFC5AD
Main Shaft for Single Head-Adjustable Rate (Package of	2) PK	MCFC5AD
15- Main Shaft for Double Head Adjustable Rate	EA	DM5A00D
16- Main Shaft for Dual Head Dual Control – Adjustable Rate	e EA	DM5A0D0
17- Feed Rate Housing w/Roller Clutch, Seal and Rivets	EA	FC5D0OS

Patented Mechanical Control

Stenner's unique control mechanism allows output to be scaled from 5% to 100% with a simple turn of the dial. Numbers on the dial are in 10% increments, and each graduation marking represents a 2.5% step.

PUMP HEADS AND PARTS

Prime Point

Never use lubrication grease or oil on the pump tube, pump head, or roller assembly. Some types of grease and oil are incompatible with plastic parts and could cause failure.

Pump Heads (pump tub	e included)	UM	Part No.
#1 Pump Head (Package of 1)		PK	UCTHC1D
#1 Pump Head (Package of 2)		PK	MCTHC1D
#1 Pump Head (Package of 1)	(ferrules 1/4" & duckbill included)	PK	UCPH1FD
#2 Pump Head (Package of 1)		PK	UCTHC2D
#2 Pump Head (Package of 2)		PK	MCTHC2D
#2 Pump Head (Package of 1)	(ferrules 1/4" & duckbill included)	PK	UCPH2FD
#3 Pump Head (Package of 1)		PK	UCTHC3D
#3 Pump Head (Package of 2)		PK	MCTHC3D
#4 Pump Head (Package of 1)		PK	UCTHC4D
#4 Pump Head (Package of 2)		PK	MCTHC4D
#5 Pump Head (Package of 1)		PK	UCTHC5D
#5 Pump Head (Package of 2)		PK	MCTHC5D
#7 Pump Head (Package of 1)	Single Head Only	PK	UCTHC7D
#7 Pump Head (Package of 2)	Single Head Only	PK	MCTHC7D
#7 Pump Head (Package of 1)	(ferrules 1/4" & duckbill included)	PK	UCPH7FD

Pump Head Parts	UM	Part No.
1- Tube Housing Only (Package of 1)	PK	UCCP400
Tube Housing Only (Package of 2)	PK	MCCP400
2- Roller Assembly – (Package of 1)	PK	UC3ASYD
Roller Assembly – (Package of 4)	PK	MC3ASYD
3- Standard Roller	EA	CP33000
4- Tube Housing Cover Bushing Included (Package of 1)	PK	UCCP100
Tube Housing Cover Bushing Included (Package of 4)	PK	MCCP100
5- Cover Screw "B" (Package of 10)	PK	UCCPS0B
Cover Screw "B" (Package of 24)	PK	MCCPS0B
Adapter Tube Housing Cover (Package of 1) not shown	PK	UCDM1A0
Adapter Tube Housing Cover (Package of 2) not shown	PK	MCDM1A0
Roller Shaft Bushing not shown	EA	CP31RSB
Tube Housing Cover Bushing Only not shown	EA	CP100CB

PUMP TUBES AND ADAPTER PUMP HEADS

PUMP TUBE ASSEMBLY NOTES:

- Stenner pump tubes (except #7) are interchangeable with all Stenner metering pumps. Pump output range can be changed by using a different pump tube.
- Pump tube fittings are stamped with numbers, 1-5 are rated for 0-25 psi back pressure and 1,2, & 7 are rated for 0-100 psi back pressure.
- Note: #7 pump tubes only fit single-head pumps for high-pressure applications.

Pump Tubes (ferrules included)	UM	Part No.	
6- #1 Pump Tube (Package of 2)	PK	UCCP201	
#1 Pump Tube (Package of 5)	PK	MCCP201	
#1 Pump Tube (Package of 2) (ferrules 1/4" & duckbills included)	PK	UCCP1FD	efe
#2 Pump Tube (Package of 2)	PK	UCCP202	6
#2 Pump Tube (Package of 5)	PK	MCCP202	out
#2 Pump Tube (Package of 2) (ferrules 1/4" & duckbills included)	PK	UCCP2FD	put
#3 Pump Tube (Package of 2)	PK	UCCP203	tab
#3 Pump Tube (Package of 5)	PK	MCCP203	Refer to output tables for correct tube size
#4 Pump Tube (Package of 2)	PK	UCCP204	or o
#4 Pump Tube (Package of 5)	PK	MCCP204	örr
#5 Pump Tube (Package of 2)	PK	UCCP205	ect
#5 Pump Tube (Package of 5)	PK	MCCP205	tub
#7 Pump Tube (Package of 2) Single Head Only	PK	UCCP207	e siz
#7 Pump Tube (Package of 5) Single Head Only	PK	MCCP207	. ie
#7 Pump Tube (Package of 2) (ferrules 1/4" & duckbills included)	PK	UCCP7FD	
Pump Tubes – Europe (6mm ferrules included)			
#1 Pump Tube (Package of 2)	PK	UCCP21CE	
#1 Pump Tube (Package of 5)	PK	MCCP21CE	-
#1 Pump Tube (Package of 2) (ferrules 6mm & duckbills included)	PK	UC1FDCE	efei
#2 Pump Tube (Package of 2)	PK	UCCP22CE	Refer to output tables for correct tube size
#2 Pump Tube (Package of 5)	PK	MCCP22CE	out
#2 Pump Tube (Package of 2) (ferrules 6mm & duckbills included)	PK	UC2FDCE	put
#3 Pump Tube (Package of 2)	PK	UCCP23CE	tabl
#3 Pump Tube (Package of 5)	PK	MCCP23CE	es
#4 Pump Tube (Package of 2)	PK	UCCP24CE	for
#4 Pump Tube (Package of 5)	PK	MCCP24CE	orr
#5 Pump Tube (Package of 2)	PK	UCCP25CE	ect
#5 Pump Tube (Package of 5)	PK	MCCP25CE	tub
#7 Pump Tube (Package of 2) Single Head Only	PK	UCCP27CE	Si2
#7 Pump Tube (Package of 5) Single Head Only	PK	MCCP27CE	e I
#7 Pump Tube (Package of 2) (ferrules 6mm & duckbills included)	PK	UC7FDCE	
Adapter Pump Heads (pump tube included)	UM	Part No.	
#1 Adapter Pump Head (Package of 1)	PK	UC1ATC1	
#1 Adapter Pump Head (Package of 2)	PK	MC1ATC1	ָּדָי קַּדָ
#1 Adapter Pump Head (Package of 1) (ferrules 1/4" & duckbills included)	PK	UCAH1FD	or D
#2 Adapter Pump Head (Package of 1)	PK	UC1ATC2	ouk
#2 Adapter Pump Head (Package of 2)	PK	MC1ATC2	ole F Con
#2 Adapter Pump Head (Package of 1) (ferrules 1/4" & duckbills included)	PK	UCAH2FD	trol
#3 Adapter Pump Head (Package of 1)	PK	UC1ATC3	d an
#3 Adapter Pump Head (Package of 2)	PK	MC1ATC3	mps D
#4 Adapter Pump Head (Package of 1)	PK	UC1ATC4	For Double Head and Dual Head Dual Control Pumps Only
#4 Adapter Pump Head (Package of 2)	PK	MC1ATC4	Hea
#5 Adapter Pump Head (Package of 1)	PK	UC1ATC5	ď
#5 Adapter Pump Head (Package of 2)	PK	MC1ATC5	

Prime Point

Schedule a regular pump tube maintenance change-out to prevent chemical damage to the metering pump or possible chemical spills.

#1 & #2 Pump Tube

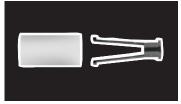
#3 & #4 Pump Tube

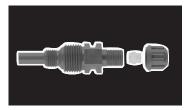
#5 Pump Tube

#7 Pump Tube

Adapter Pump Head

PARTS


Connecting Nut 1/4"


Connecting Nut 3/8" with Adapter

Ferrules

Ceramic Weight with Clip

Injection Fitting 1/4"

Injection Check Valve 1/4"

Miscellaneous Parts	UM	Part No.
Connecting Nut 1/4" (Package of 10)	PK	UCAK100
Connecting Nut 1/4" (Package of 24)	PK	MCAK100
Connecting Nut 3/8"	EA	MANUT00
Connecting Nut 3/8" with Adapter (Package of 2)	PK	UCADPTR
Connecting Nut 3/8" with Adapter (Package of 5)	PK	MCADPTR
Injection Point Cap 1/4" (Package of 5)	PK	UCAK101
Injection Point Cap 1/4" (Package of 24)	PK	MCAK101
Ferrule 1/4" (Package of 10)	PK	UCAK200
Ferrule 1/4" (Package of 24)	PK	MCAK200
Ferrule 6mm (Package of 24) <i>Europe</i>	PK	MCAK2CE
Ceramic Weight w/ 1/4" clip (Package of 1)	PK	UCMACW
Ceramic Weight w/ 1/4" clip (Package of 5)	PK	MCMACW
Ceramic Weight w/ 3/8" clip (Package of 1)	PK	UCMAC38
Ceramic Weight w/ 3/8" clip (Package of 5)	PK	MCMAC38
Ceramic Weight w/ 6mm clip (Package of 1) Europe	PK	UCMACCE
Suction/Discharge Tubing UV Black 20' x 1/4"	EA	AK4002B
Suction/Discharge Tubing White 20' x 1/4"	EA	AK4002W
Suction/Discharge Tubing UV Black 100' x 1/4"	EA	AK4010B
Suction/Discharge Tubing White 100' x 1/4"	EA	AK4010W
Suction/Discharge Tubing UV Black 1000' x 1/4"	EA	AK4100B
Suction/Discharge Tubing White 1000' x 1/4"	EA	AK4100W
Suction/Discharge Tubing UV Black 20' x 3/8"	EA	MALT02B
Suction/Discharge Tubing White 20' x 3/8"	EA	MALT002
Suction/Discharge Tubing UV Black 100' x 3/8"	EA	MALT10B
Suction/Discharge Tubing White 100' x 3/8"	EA	MALT010
Suction/Discharge Tubing UV Black 1000' x 3/8"	EA	MALTB10
Suction/Discharge Tubing White 1000' x 3/8"	EA	MALT100
Suction/Discharge Tubing White 20' x 6mm <i>Europe</i>	EA	AK20W6N
Suction Line Strainer with Ferrule & Nut 1/4"	EA	MASST00
Suction Line Strainer with Ferrule & Nut 3/8"	EA	MASST03
Grease (8 oz. tube)	EA	MAGCSGF
Dhook Volue Davie		
Check Valve Parts	UM	Part No.
Injection Fitting w/ Nut & Ferrule 1/4" (Package of 1)	PK	UCAK300
njection Fitting w/ Nut & Ferrule 1/4" (Package of 5)	PK	MCAK300
njection Fitting w/ Nut & Ferrule 6mm (Package of 1) Europe	PK	UCAK3CE
	PK	UCDBINJ
Injection Check Valve 1/4" (Package of 1) Injection Check Valve 1/4" (Package of 5)	PK PK	UCDBINJ MCDBINJ
njection Check Valve 1/4" (Package of 1)		
njection Check Valve 1/4" (Package of 1) njection Check Valve 1/4" (Package of 5)	PK	MCDBINJ

Check Valve PartsContinued	UM	Part No.
Check Valve Duckbill Only (Package of 2)	PK	UCCVDB0
Check Valve Duckbill Only (Package of 5)	PK	MCCVDB0
Check Valve Body Only 1/4"	EA	CVF1/4
Check Valve Body Only 3/8"	EA	CVF3/8
Check Valve Injection Fitting Only 1/4"	EA	CVIJ1/4
Check Valve Injection Fitting Only 3/8"	EA	CVIJ3/8
Check Valve O-Ring	EA	CVIJOR

Accessory Kits

Accessories in each kit are based on pressure rating (25 psi or 100 psi), connection size (1/4", 3/8" or 6mm) and suction/discharge color. Double Head or Dual Control models will have two kits per metering pump.

- (3) Connecting nuts (1/4" or 3/8")
- (3) Ferrules w/1/4" & 6mm or (2) ferrules w/3/8"
- (1) Injection check valve (0-100 psi) or (1) Injection Fitting (0-25 psi)
- (1) Ceramic weight with clip
- (1) 20' roll of suction & discharge tubing 1/4" or 3/8" white or UV black OR 6mm (Europe) white
- (1) Spare pump tube
- (1) Installation and maintenance manual

High Pressure (0-100 psi) Choose #1, 2 or 7 pump tube	UM	Part No.
Accessory Kit with # Tube & 1/4" White Suction/Discharge	EA	HPACK
Accessory Kit with # Tube & 1/4" UV Black Suction/Discharge	EA	HPACK_B
Accessory Kit with # Tube & 3/8" White Suction/Discharge	EA	MAHPK
Accessory Kit with # Tube & 3/8" UV Black Suction/Discharge	EA	MAHPK_B
Accessory Kit with # Tube & 6mm White Suction/Discharge Europe	EA	CEHPK
Low Pressure (0-25 psi) Choose #1-5 pump tube	UM	Part No.

LUW PIESSUIG (0-25 psi) Choose #1-5 pump tube	UM	Part No.
Accessory Kit with # Tube & 1/4" White Suction/Discharge	EA	CPACK
Accessory Kit with # Tube & 1/4" UV Black Suction/Discharg	je EA	CPACK_B
Accessory Kit with # Tube & 3/8" White Suction/Discharge	EA	MAACK
Accessory Kit with # Tube & 3/8" UV Black Suction/Discharg	je EA	MAACK_B
Accessory Kit with # Tube & 6mm White Suction/Discharge	Europe EA	CEACK

Check Valve Duckbill

Check Valve O-Ring

Check Valve Body Only 1/4"

Check Valve Body Only 3/8"

LIMITED WARRANTY AND SERVICE POLICY **Damaged or Lost Shipments** UPS and prepaid truck shipments: Check your order immediately upon arrival. All damage must be noted on the delivery receipt. Call Stenner Customer Service at 800-683-2378 for all shortages and damages within seven (7) days of receipt. Stenner offers a 30-day return policy. Except as otherwise provided, no material will be accepted for return after 30 days from purchase. To return merchandise at any time, call Stenner at 800-683-2378 for a Returned Goods Authorization (RGA) number. A 15% re-stocking fee will be applied. Include a copy of your invoice or packing slip with your return. **Limited Warranty** G. H. Stenner & Co., Inc. will for a period of one (1) year from the date of purchase (proof of purchase required) repair or replace – at our option – all defective parts. G. H. Stenner & Co., Inc. is not responsible for any removal or installation costs. Pump tube assemblies and rubber components are considered perishable and are not covered in this warranty. Pump tube will be replaced each time a pump is in for service, unless otherwise specified. The cost of the pump tube replacement will be the responsibility of the customer. G. H. Stenner & Co., Inc. will incur shipping costs for warranty products shipped from our factory in Jacksonville, Florida. Any tampering with major components, chemical damage, faulty wiring, weather conditions, water damage, power surges, or products not used with reasonable care and maintained in accordance with the instructions will void the warranty. G. H. Stenner & Co., Inc. limits its liability solely to the cost of the original product. We make no other warranty expressed or implied. The information contained in this manual is not intended for specific application purposes. G. H. Stenner & Co., Inc. reserves the right to make changes to prices, products, and specifications at any time without prior notice. 3174 DeSalvo Road Jacksonville, Florida 32246 sales@stenner.com www.stenner.com Phone: 904-641-1666 US Toll Free: 800-683-2378 Fax: 904-642-1012 Hours of Operation (EST): Mon. – Thu. 7 AM – 5 PM **STENNER** Friday 7 AM – Noon